Thermomechanics of rubber at small strains
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A reduced variable, linear thermoelastic constitutive equation for rubber at small strains is obtained from
classical linear thermoelasticity and empirical observations about the stress—temperature behaviour of real
elastomers at fixed strain. In contrast to the statistical theory of rubber elasticity, volume changes are
recognized explicitly in the three constant equation of state. This formulation leads to self-consistent,
quantitative predictions of the thermoelastic inversion and internal energy changes with deformation which

support the basic tenets of the statistical theory.
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Considerable effort has been expended to measure and
derive relationships for the internal energy and entropy
contributions to the deformation behaviour of rubber
solids. The constitutive equation most commonly used to
interpret thermoelastic data and derive internal energy
and entropy expressions for rubbery solids is that obtained
from the statistical theory of rubber elasticity. This is a
single parameter equation in the temperature dependent
shear modulus G=NkT, with N the number of network
chains per unit volume, k the Boltzmann constant, and T
the absolute temperature. Consequently, all of the
temperature dependence (and none of the volume
dependence) of the ideal rubbery solid is contained in the
single mechanical constant, G(T). The assumption of
constant volume deformation (i.e. incompressibility) is
very nearly true for rubber, and is convenient for large
deformation strain energy formulations since it greatly
simplifies the relationship between the three principal
extensions. However, this type of formulation cannot
account in a self-consistent manner for dilatational effects
caused by deformation which are thought to be the
primary source of the internal energy contribution to
rubber deformation at small strains where the statistical
theory is assumed to be valid.

Internal energy changes resulting from volume changes
cannot be calculated directly from the one parameter
ideal rubber equation of state which recognizes only
distortional contributions to the free energy. The usual
procedure for circumventing this deficiency of the
statistical theory is to invoke a thermodynamic correction
term which relates stress to volume and ultimately to
internal energy’. More unified continuum derivations by
Chadwick? and Crochet and Naghdi® simultaneously
recognize the bulk, liquid-like behaviour of rubber and
the distortional network contribution in the free energy
function for rubber-like materials. These formulations
lead naturally to the prediction of anomalous behaviour
such as the thermoelastic inversion and can account in a
general sense for the internal energy changes with
deformation.
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Along similar lines, Boggs* derived a partition function
for rubber which is the product of the partition function
of a liquid comprised of chain elements and the partition
function of the non-interacting network chains. The total
free energy was then the sum of the free energy of the
network without intermolecular interactions and the free
energy of the liquid in which intermolecular interactions
were recognized explicitly through (for example) a Van
der Waals potential. A result of Boggs’ work, which is
particularly relevent to the following discussion, is the
predicted volume-temperature relationship for rubber,
which shows slight negative deviation from linearity, i.e.
the thermal expansion coefficient is expected to be
roughly proportional to T,/T, where T, is a reference
temperature.

In the following section thermodynamic relationships
for elastic solids (see Appendix) will be used with the
constitutive equation for a classical linear thermoelastic
solid to review the calculation of internal energy and
entropy changes with deformation for hard elastic solids.
Finally, empirical observations about the thermoelastic
behaviour of rubbery solids will lead to a linear
thermoelastic constitutive equation which includes
temperature depencence in the form of a reduced modulus
and thermal expansion coefficient. Using this constitutive
equation for rubber at small strains, internal energy
changes are calculated which agree with the assumptions
of the statistical theory and show quantitative agreement
with experiment.

CLASSICAL LINEAR THERMOELASTICITY

The general thermodynamic equations for elastic solids
given in the Appendix provide the necessary relationships
to deduce internal energy and entropy contributions to
elastic deformation provided a suitable constitutive
equation for the solid is known. In this section we follow
closely the derivation of Sneddon® using the constitutive
equation for a classical linear thermoelastic solid, i.c. a
solid whose properties are assumed to be independent of
temperature.

The constitutive equation relating the stress, strain and
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temperature of an isotropic, linear thermoelastic solid can
be written

E;

0',-1-=(1—+v)(1—_2—v)[ve5,-j+ (1 —2V)£ij— (1 +V) “T(T_ 7;)5,-1-]
(1)
where ¢;; are the components of the small strain tensor,
ou; Ou;
ey=} —'+—’] 2)
J E[ﬁxj 0x;

E; is the temperature-independent Young’s modulus, and
o the temperature-independent linear thermal expansion
coefficient at constant stress. The dilatation, e, is
e=¢;=0V]V, and v is Poisson’s ratio. Equation (1) can be
contracted showing that the mean normal pressure, p, is

p=—%0u= 3(1 [e 3ar(T-T,)] 3)

from which

oP E;
K~(3), 0w @

is the isothermal bulk modulus for the solid whose
constitutive equation is equation (1).

From equations (1) and (46) (see Appendix), the change
in internal energy with strain for such a solid is

ou Er
<6sU>T m[ve5,1+(l 2v)e;+ (1 +v) arT,6;]

)

Substituting equations (50) and (5) into the total
differential for the internal energy (equation (47)) and
integrating gives

Eqe

U=t 2(1—2v)

=30,y + (T+T)+C(T-T;), (6)
where U, denotes the internal energy of the initial state
&;=0, T= T,. The last term on the right hand side of
equatlon (6) is the heat content, and the middle term
results from the interaction of elastic deformation and
thermal diffusion.

The entropy change is derived analogously. From
equations (45) and (1), the change in entropy with strain
at constant temperature is

aS _ ETaT
(agi,)f T2 % @

The total differential for the entropy in terms of the strain
and temperature is

as os
ds= ( = )Td ,,+<6T) dr, (8)

i

which together with equations (50) and (7), and
integration gives for the entropy change

T
Cl
- 2 —e+ nn )
The second term on the right hand side of equation (9) is
the entropy change due to heat conduction alone, while
the first term arises from the coupling of elastic and
thermal processes. For a deformation process at constant

§-8,=
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temperature T=T,, it is seen that the entropy change is
the result of volume dilatation.

If the coordinate axes are chosen such that the strains
are in the principal directions, e=¢; +¢,+¢;, and
v=—g¢,/¢;, so that for uniaxial deformation in the 1
direction at constant temperature T=T,,

e
1-2v

and the internal energy change for the isothermal uniaxial
deformation at constant pressure becomes

U—UO=T:)ETdT81 +%ET8f (10)

which is quadratic in strain. The two terms which
contribute to the internal energy change depend on E;,
which represents essentially the harmonic character of the
binding forces, and «;, which is associated with the
anharmonicities.

From equation (9) it is clear that the reversible heat of
an isothermal tensile deformation process at constant
pressure is

&g = o,=Er¢

q=T,(8—S,)=T.Erare, (11)

This equation has been verified by deformation
calorimetry of steel wires® and glassy and crystalline
polymers”-8. The relationship between the heat, work and
internal energy change for a linear thermoelastic solid in
uniaxial deformation at constant temperature and
pressure is shown in Figure 1.

The above derivations showed that, in the final
analysis, volume changes determine the entropy
contribution and influence the internal energy
component of deformation for classical linear
thermoelastic solids. In many cases, particularly in rubber
elasticity, it is desired to separate the internal energy
contributions arising from shape or length changes from

Energy
!
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Figure 1 Heat, work and internal energy change versus strain for a
classical linear thermoelastic solid



those due to volume changes. Shape and volume changes
can be considered separately by writing the stress and
strain tensors in terms of their deviatoric (shape) and
spherical (volumetric) components. Using this for-
mulation, the stress components become

"_‘o."+p51p (12)

where primes denote the deviatoric components and p is
the mean normal pressure given by equation (3).
Similarly, the strain components become

6= +1ed; (13)

Substituting for the stress and strain components in
equation (1), the constitutive equation for the classical
linear thermoelastic solid in terms of the deviatoric stress
and strain becomes simply

o0y _
(ﬁ)em =0 (15)

for a material having a temperature independent shear
modulus, G The internal energy change due only to
shape changes at constant temperature then becomes

ou , 0a; .
() ~e-1(52) = (16

The ratio of the energetic component, (6U/de};)y, to the
deviatoric stress for the linear thermoelastic solid is

1/0
‘<£> =1 (17)
Oj asij T

Consequently, in the absence of volume changes, the
energetic component of the elastic stress is identical to the
stress for a classical linear thermoelastic solid having
temperature independent properties whose constitutive
equation is equation (1).

and

EXTENSION OF LINEAR THERMOELASTICITY
TO RUBBERY SOLIDS

As a starting point in developing a suitable constitutive
equation for a rubbery solid we assume that at
infinitesimal strains rubber behaves like a classical linear
thermoelastic solid. However, we relax the restriction of
temperature independent properties and allow: E=E(T),
a=o(T). From equation (1), the uniaxial stress—strain—
temperature equation for a linear sohd is, with ¢,, =0,
Uy, =033=0,and g, =¢,

o=E[(e~a(T~T,)] (18)

Experiments show that the stress—temperature
behaviour of rubber at constant strain is linear (i.e. has a
constant slope) over a wide range of temperature, but that
it is a function of strain, going from negative to positive
with increasing strain. This behaviour is clearly
illustrated in Figure 2 which shows stress—temperature
data for natural rubber at various fixed extension ratios
(A=L/L,) obtained by Shen and Blatz®.

With both a temperature dependent modulus and
thermal expansion coefficient in equation (18),
differentiating the stress with respect to temperature at
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Figure 2 Stress-temperature data of Shen and Blatz for natural rubber
held at various extension ratios, A=1+¢. (@) heating cycle, (O) cooling
cycle

constant strain gives

oo 0E 0
<ﬁ>£ (6T>£8_Ea (T- n)ﬁ(Ea) (19)

As a consequence of the temperature independent slope

OE
(5) 2 0)

Eo#f(T) (21

From the statistical theory of rubber elasticity and linear
elasticity we know that E(T)=2(1+v)G(T)=E,T/T,
(which satisfies equation (20)). One possible choice
for a(T) which satisfies equations (19) and (21) is
a(Ty=a,T,/T, where a,=a(T,) and E,=E (T,). Using
these expressions for «(T) and E(T) the stress—
temperature slope at constant strain from equations (18)

and (19) is

Jdo E

) =24 E 22
<6T>e T &7 %l 22

which is independent of temperature and is a linear
function of strain, being negative at small strains and
positive at large strains as is observed experimentally.

At the thermoelastic inversion, the stress—temperature
slope of rubber is zero. Setting the left hand side of
equation (22) to zero, it is found that the thermoelastic
inversion occurs when e=«,T,. From equation (22) and
the relationship between shear and tensile moduli, it
follows that Poisson’s ratio is also independent of
temperature.

Substituting E (T)=E,T/T,, and a(T)=0,T,/T in the
constitutive equation for the classical linear thermoelastic
solid yields the following three dimensional constitutive
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equation for rubber at infinitesimal strains

__ETTL T,
aij—(1+v)(1—2v) ve5,~,+(1—2v)6,~j—(1+v)a07:,<1 T)a"]

(23)

Using equation (23) with the thermodynamic
relationships given in the Appendix, we obtain the
following results for the internal energy and entropy
changes in a rubber-like material, which we now define as
a linear thermoelastic solid with temperature dependent
properties

(au) _ETo 24

Osy; r 1=2v ¥
‘ o8 —601'} — 0y anoTz;
deg)r \ T ), T  T(1—2)
(25)

Upon substitution into the respective total differentials,
using the previously derived temperature dependence,
integrating gives for the internal energy and entropy
change of rubber

E Ty,

U-U,= e+C(T-T) (26)
1—2v
11, E T2 T
§—-8,= —?[zaijs,-j—— 12 eJ+C£ In T, 27)

At constant volume, and temperature T= T, it is seen that
U-U,=0and S—S,= —1/T,(1/2 6¢;;). For comparison
with experiment, the uniaxial form of equations (26) and
(27) are, at constant pressure and temperature T=T,,

U-U,=E,Tz¢, (28)
Q="T(S—So)=Eot, T,61 —3Eo8, (29)

and
W=A—A4,=(U-U,)-T,(S—S.)=3E&,*>  (30)

The heat, work and internal energy for rubber at small
strains predicted by equations (28)-(30) are shown
schematically in Figure 3. The form of these functions has
been confirmed several times for natural rubber using
deformation calorimetry!®~'2, In particular the heat
goes through an inversion at ¢, = 2, T, while the internal
energy is found to be a linear function of strain at constant
temperature and pressure, this being a result of the linear
relationship between strain and dilatation at small
strains.

Volume and shape contributions to the internal energy
and entropy changes in rubber during deformation can be
separated by considering the principal stress difference,
041 — 0,5, which removes the volume dependent terms for
a uniaxial experiment as is normally done in rubber
elasticity formulations. In this way the uniaxial stress
becomes, from equation (23)

E, 1T,
0=0y1—0;3;= T+v (11— €22)=2G, T/ T (11 —£22)
(31
But since &,, =(e—¢,,)/2,
0=3G,T/T,(e;, —e/3)
=3G, T/ T e}, (32)
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Figure 3 Heat, work and internal energy change versus strain for a
linear rubbery solid

and the stress—temperature coefficient is

Jdo 3G, o
—] =2 =— 33
R

Introducing the notation used in the literature of rubber
thermodynamics, the internal energy change with strain
at constant temperature and volume should be

ou o Jo
FF(‘a:aT)fT[?‘(ﬁ)J“" ey

The energetic component of the stress arising solely from
shape or length changes at small strain and constant
pressure in a ratio with the stress (o =f) is therefore

fo1 au) %au)
= —) =4 +—) =0 (35)
S o\ /oy o\ /r

in agreement with the definition of an ideal rubber
exhibiting no volume changes during deformation.

COMPARISON WITH EXPERIMENT

Experiments by Gee, Stern and Treloar'® show
reasonable agreement between measured dilatation and
that calculated from equation (26) using internal energy
changes obtained from stress—temperature data of natural
rubber at constant pressure. Gee!* obtained equation
(26) in differential form, (6U/de);, by assuming the
relationship between internal energy and volume for a
material under hydrostatic pressure to hold when the
volume change is due to a tensile stress. Thermostatic
measurements on natural rubber in shear by Meyer and

.van der Wyk'3 at small strains showed no thermoelastic

inversion and a negligible energetic component to the

stress, since shear strain involves no volume changes.
For direct comparison with equation (28), we cite the

uniaxial stress—temperature data at constant (atmos-



Table 1 (0U/0e,)r, p values

FGLAN Ao 1 /U

— x 107* Pa —(=—

kasl To o \ Og, Top
A Measured  Calculated Measured Calculated
1.0049 4.23 4.34 13.23 13.56
1.0095 428 - 7.13 7.23
1.0117 430 - 5.66 57
1.0162 434 - 4.06 4.06
1.0206 4.31 - 3.15 3.17
1.0255 432 - 2.62 2.63
1.0302 4.39 - 2.25 2.23
1.0401 4.39 - 1.74 1.72
1.0497 4.46 - 1.42 1.39

{(x»=4.341+0.07

pheric) pressure for natural rubber at infinitesimal strains
ahtainad ku CQha Oﬂl‘l nlofvg Tl\nca antha rann

rt
obtained by Shen ar hese authors report
a,=22x10"%/K at T,=303 K, and we calculate
E.=0.651 MPa from the data at strains up to 0.03. The
change in internal energy with tensile strain at constant
pressure should then be

0
(—U) =E, T,x,=(0.651 x 10° Pa)(303K)(22x 104K !
\ %%, / T,.P
=434 x10* Pa

In Table I the values of (0U/d¢,); » evaluated at each
strain for temperature T =T, are shown using equation
(46) and the reported stress—temperature data. It is seen
that at small strains, where the linear theory is expected to

hald ransanahla sith tha ad vala
101G, réascnacic asu,\.uu.«ut with the measured value 1s

achieved. The ratio l( 2—U)
[v2 \UEI J To,P
measured stress is also compared to values for this
quantity obtained from the thermoelastic data. Again,
good agreement is obtained at small strains where
g, =4, —1 and A, is the extension ratio.
According to equation (22), the thermoelastic inversion
should occur at &= T,=0.067. This compares

ldVOuI'ley with the vaiue Ol &= 0.070 ODldlnCU 1rom the

data of Shen and Blatz, considering the limitations of the
small strain thenrv

The form of the thermal expansion coefficient leading
to equation (23), (T)=w,T,/T, suggests slight
negative curvature in a plot of volume versus temperature,
as predicted by Boggs. Moreover both the thermal
expansion coefficient and the modulus are assumed to be
temperature dependent material properties which are

indanandant Af dafaematinn gtata wmarimant an
macpenadnt o1 aGIormauioii  staic. LA};\A 1MCHis Oon

natural rubber by Allen, Bianchi and Price!® confirm that
o, is independent of uniaxial strain in the range
A =1.0-2.2.

calculated with the

CONCLUSIONS

A linear thermoelastic constitutive equation for rubber at
small strains is obtained by generalizing classical linear
thermoelasticity to include a temperature dependent
modulus and thermal expansion coefficient. From this
constitutive equation it was shown that the internal
energy change in rubbery solids is the resuit of dilatation
while the distortional strain energy resides in the entropy

b[ldIlgC 1 Illb DCIldVlOUI' Ib lil conirast to naru Cldbllb bUllub
but in complete agreement with statistical and molecular
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theories of rubber elasticity. Consequently, the
temperature dependent modulus and thermal expansion
coefficient of rubber reverses the role of internal energy
and entropy contributions to deformation at small
strains.

Quoting from Gee’s 1946 paper on natural rubber, ‘We
conclude therefore that for small extensions, the observed
expansion is produced by the hydrostatic component of
the tensile force. It consists of an increase in the average
intermolecular spacing, and is accompanied by the
equivalent increase in both internal energy and

entropy.’

APPENDIX

General thermodynamic relations for elastic solids

The first law of thermodynamics which describes the
complete energy balance for any closed deformation
process, whether reversible or irreversible, has the well
known form

dU=dg+dw (36)

whara AT7 Adr and A ara tha insramiantal ngac in
wiiliv Uuv, ug alih 4w aiv tie incremeintal vu HECS 111

internal energy, heat and work per unit volume.

The incremental work may be due to changes in any
relevant extensive—intensive mechanical variable pair
representing generalized forces and displacements. For
homogeneous solid deformation, the work per unit
volume is

dw=o0;de; 37
where o; ij» &ij (1, j=1, 2, 3) are components of compatible
stress and straln tensors Wlth equation (37) the first law

of thermodynamics for solid deformation becomes,
dU=dq+o0;;de; (38)
The second law of thermodynamics gives the entropy
balance, S, at constant temperature, T,

dq
>
ds> =

(39)
where the inequality holds for spontaneous or irreversible
processes and the equality for reversible processes.

For a reversible deformation process, the combined
first and second laws give

dU=T4S +0;de; 40)
The Helmbholtz free energy, 4, is
A=U-TS 1)
which toegether with equation (40) yields
dA=0;de;—8dT 42)
From equation (42) it follows that
( STA)= oy 43)
and
0A
(#7).~ “
from which I
{da;\ {08\
\or)..” e )
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From equations (40) and (45),

7} U o ij
<EU)T— aij — T<_6—T—>EN (46)

Writing the total differential for the internal energy in
terms of the strain and temperature,

oUu ou
=| — | = T
dau (aﬁij>rd£”+<aT)g,,d 47

and rearranging equation (40) to read
1 1

the incremental entropy change with equation (47) in
(48) is

1[/oU ou 1
o5=r| (), (57 97| ~routen 9

from which it follows that

oS oU
T(ﬁlu = (a—T)ei, =C, (50)

Subscripts ¢; on all of the above partial differential
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equations imply that all strains are held constant. In
equation (50), C, is the heat capacity of the solid at
constant strain. In the undeformed state, C,=C,.
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