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A reduced variable, linear thermoelastic constitutive equation for rubber at small strains is obtained from 
classical linear thermoelasticity and empirical observations about the stress-temperature behaviour of real 
elastomers at fixed strain. In contrast to the statistical theory of rubber elasticity, volume changes are 
recognized explicitly in the three constant equation of state. This formulation leads to self-consistent, 
quantitative predictions of the thermoelastic inversion and internal energy changes with deformation which 
support the basic tenets of the statistical theory. 
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Considerable effort has been expended to measure and 
derive relationships for the internal energy and entropy 
contributions to the deformation behaviour of rubber 
solids. The constitutive equation most commonly used to 
interpret thermoelastic data and derive internal energy 
and entropy expressions for rubbery solids is that obtained 
from the statistical theory of rubber elasticity. This is a 
single parameter equation in the temperature dependent 
shear modulus G = NkT, with N the number of network 
chains per unit volume, k the Boltzmann constant, and T 
the absolute temperature. Consequently, all of the 
temperature dependence (and none of the volume 
dependence) of the ideal rubbery solid is contained in the 
single mechanical constant, G(T). The assumption of 
constant volume deformation (i.e. incompressibility) is 
very nearly true for rubber, and is convenient for large 
deformation strain energy formulations since it greatly 
simplifies the relationship between the three principal 
extensions. However, this type of formulation cannot 
account in a self-consistent manner for dilatational effects 
caused by deformation which are thought to be the 
primary source of the internal energy contribution to 
rubber deformation at small strains where the statistical 
theory is assumed to be valid. 

Internal energy changes resulting from volume changes 
cannot be calculated directly from the one parameter 
ideal rubber equati6n of state which recognizes only 
distortional contributions to the free energy. The usual 
procedure for circumventing this deficiency of the 
statistical theory is to invoke a thermodynamic correction 
term which relates stress to volume and ultimately to 
internal energy 1. More unified continuum derivations by 
Chadwick 2 and Crochet and Naghdi 3 simultaneously 
recognize the bulk, liquid-like behaviour of rubber and 
the distortional network contribution in the free energy 
function for rubber-like materials. These formulations 
lead naturally to the prediction of anomalous behaviour 
such as the thermoelastic inversion and can account in a 
general sense for the internal energy changes with 
deformation. 

* Present address: Lawrence Livermore National Laboratory, PO Box 
808, L-338, Livermore, CA 94550, USA. 

Along similar lines, Boggs 4 derived a partition function 
for rubber which is the product of the partition function 
of a liquid comprised of chain elements and the partition 
function of the non-interacting network chains. The total 
free energy was then the sum of the free energy of the 
network without intermolecular interactions and the free 
energy of the liquid in which intermolecular interactions 
were recognized explicitly through (for example) a Van 
der Waals potential. A result of Boggs' work, which is 
particularly relevent to the following discussion, is the 
predicted volume-temperature relationship for rubber, 
which shows slight negative deviation from linearity, i.e. 
the thermal expansion coefficient is expected to be 
roughly proportional to To/T, where To is a reference 
temperature. 

In the following section thermodynamic relationships 
for elastic solids (see Appendix) will be used with the 
constitutive equation for a classical linear thermoelastic 
solid to review the calculation of internal energy and 
entropy changes with deformation for hard elastic solids. 
Finally, empirical observations about the thermoelastic 
behaviour of rubbery solids will lead to a linear 
thermoelastic constitutive equation which includes 
temperature depencence in the form of a reduced modulus 
and thermal expansion coefficient. Using this constitutive 
equation for rubber at small strains, internal energy 
changes are calculated which agree with the assumptions 
of the statistical theory and show quantitative agreement 
with experiment. 

CLASSICAL LINEAR THERMOELASTICITY 

The general thermodynamic equations for elastic solids 
given in the Appendix provide the necessary relationships 
to deduce internal energy and entropy contributions to 
elastic deformation provided a suitable constitutive 
equation for the solid is known. In this section we follow 
closely the derivation of Sneddon 5 using the constitutive 
equation for a classical linear thermoelastic solid, i.e. a 
solid whose properties are assumed to be independent of 
temperature. 

The constitutive equation relating the stress, strain and 
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temperature of an isotropic, linear thermoelastic solid can 
be written 

Er 
a~j = (1 + v)(1 - 2v) [vecS° + (1 - 2v)eq- (1 + v) ~r (T -  To)c~0] 

(1) 
where % are the components of the small strain tensor, 

ll-au~ 0uj-1 ~o = f l - -  + - - /  (2) 
"Laxj ax~j 

Er is the temperature-independent Young's modulus, and 
• r the temperature-independent linear thermal expansion 
coefficient at constant stress. The dilatation, e, is 
e = e, = d V/Vo and v is Poisson's ratio. Equation (1) can be 
contracted showing that the mean normal pressure, p, is 

- - E  T 
p=--½trkk 3(l_2v~[e-3ctr(T-To)] (3) 

from which 

Kr=  - ~ e  r = 3(1 - 2v) (4) 

is the isothermal bulk modulus for the solid whose 
constitutive equation is equation (1). 

From equations (1) and (46) (see Appendix), the change 
in internal energy with strain for such a solid is 

( ~ ) T  = (1 + v)(1Er- 2v)[veJij+ (1-2v)eo+ (1 + v) 0trToro] 

(5) 

Substituting equations (50) and (5) into the total 
differential for the internal energy (equation (47)) and 
integrating gives 

U-Uo=½aoeo-~ . , E ~  (T+ TO)+C~(T-To), (6) 
z(t - zv~ 

where Uo denotes the internal energy of the initial state 
eq=0, T= To. The last term on the right hand side of 
equation (6) is the heat content, and the middle term 
results from the interaction of elastic deformation and 
thermal diffusion. 

The entropy change is derived analogously. From 
equations (45) and (1), the change in entropy with strain 
at constant temperature is 

( ~ ) r =  E~2~ 6/j (7) 

The total differential for the entropy in terms of the strain 
and temperature is 

OS ~S 

which together with equations (50) and (7), and 
integration gives for the entropy change 

Erc¢r T 
S -  So= I--Z-~ve + C,InTo (9) 

The second term on the right hand side of equation (9) is 
the entropy change due to heat conduction alone, while 
the first term arises from the coupling of elastic and 
thermal processes. For a deformation process at constant 

temperature T= To, it is seen that the entropy change is 
the result of volume dilatation. 

If the coordinate axes are chosen such that the strains 
are in the principal directions, e=e l+e2+ea ,  and 
v=-e2 /e l ,  so that for uniaxial deformation in the 1 
direction at constant temperature T= To, 

e 
ez = 1 - 2v trz = ETet 

and the internal energy change for the isothermal uniaxial 
deformation at constant pressure becomes 

U -  Uo = TO Ero~rel +~Erell 2 (10) 

which is quadratic in strain. The two terms which 
contribute to the internal energy change depend on Er~ 
which represents essentially the harmonic character of the 
binding forces, and ctr, which is associated with the 
anharmonicities. 

From equation (9) it is clear that the reversible heat of 
an isothermal tensile deformation process at constant 
pressure is 

q = To(S - So) = ToEr ~r el (I 1) 

This equation has been verified by deformation 
calorimetry of steel wires 6 and glassy and crystalline 
polymers 7'a. The relationship between the heat, work and 
internal energy change for a linear thermoelastic solid in 
uniaxial deformation at constant temperature and 
pressure is shown in Figure 1. 

The above derivations showed that, in the final 
analysis, volume changes determine the entropy 
contribution and influence the internal energy 
component of deformation for classical linear 
thermoelastic solids. In many cases, particularly in rubber 
elasticity, it is desired to separate the internal energy 
contributions arising from shape or length changes from 
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Figure 1 Heat, work and internal energy change versus strain for a 
classical linear thermoelastic solid 
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those due to volume changes. Shape and volume changes 
can be considered separately by writing the stress and 
strain tensors in terms of their deviatoric (shape) and 
spherical (volumetric) components. Using this for- 
mulation, the stress components become 

tris= a' o + p6ti, (12) 

where primes denote the deviatoric components and p is 
the mean normal pressure given by equation (3). 
Similarly, the strain components become 

, 1 (13) eij ~- - -  eij + 3e(~ij 

Substituting for the stress and strain components in 
equation (1), the constitutive equation for the classical 
linear thermoelastic solid in terms of the deviatoric stress 
and strain becomes simply 

t a~j= 2GTeij (14) 

and 

(3T J~,, 
for a material having a temperature independent shear 
modulus, Gr. The internal energy change due only to 
shape changes at constant temperature then becomes 

~--;-, i = trij - ' (16) 

The ratio of the energetic component, ((~UI~e~j)T , t o  the 
deviatoric stress for the linear thermoelastic solid is 

O'ij \ ~elj/I T 

Consequently, in the absence of volume changes, the 
energetic component of the elastic stress is identical to the 
stress for a classical linear thermoelastic solid having 
temperature independent properties whose constitutive 
equation is equation (1). 

EXTENSION OF LINEAR THERMOELASTICITY 
TO RUBBERY SOLIDS 

As a starting point in developing a suitable constitutive 
equation for a rubbery solid we assume that at 
infinitesimal strains rubber behaves like a classical linear 
thermoelastic solid. However, we relax the restriction of 
temperature independent properties and allow: E = E(T), 
• =a(T). From equation (1), the uniaxial stress-strain- 
temperature equation for a linear solid is, with at t = a, 
Lr22-~t733-m-0, and ~11 = ~ ,  

a=E [ ( e -  ~(T- To)] (18) 

Experiments show that the stress-temperature 
behaviour of rubber at constant strain is linear (i.e. has a 
constant slope) over a wide range of temperature, but that 
it is a function of strain, going from negative to positive 
with increasing strain. This behaviour is clearly 
illustrated in Figure 2 which shows stress-temperature 
data for natural rubber at various fixed extension ratios 
(,~ = L/Lo) obtained by Shen and Blatz 9. 

With both a temperature dependent modulus and 
thermal expansion coefficient in equation (18), 
differentiating the stress with respect to temperature at 
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constant strain gives 

f Sa\ f c~E'x 
- -  = - -  e -  E ~ -  t S ~ )  ~ t t~,) ,  (T-To)~(E~) (19) 

As a consequence of the temperature independent slope 

(c3-~:/:f(T)~ (20) 

Ect # f (T) (21) 

From the statistical theory of rubber elasticity and linear 
elasticity we know that E(T)=2(I+v)G(T)=EoT/TO 
(which satisfies equation (20)). One possible choice 
for a(T) which satisfies equations (19) and (21) is 
a(T)=0toTo/T, where ~o=a(To) and Eo=E(To). Using 
these expressions for ~(T) and E(T) the stress- 
temperature slope at constant strain from equations (18) 
and (19) is 

&r \ Eo 
- - /  = - -  e - ~ o E o  ( 2 2 )  
(gT//~ To 

which is independent of temperature and is a linear 
function of strain, being negative at small strains and 
positive at large strains as is observed experimentally. 

At the thermoelastic inversion, the stress-temperature 
slope of rubber is zero. Setting the left hand side of 
equation (22) to zero, it is found that the thermoelastic 
inversion occurs when e=~oTo. From equation (22) and 
the relationship between shear and tensile moduli, it 
follows that Poisson's ratio is also independent of 
temperature. 

Substituting E (T) = EoT/TO, and a(T) = aoTO/T in the 
constitutive equation for the classical linear thermoelastic 
solid yields the following three dimensional constitutive 
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equation for rubber at infinitesimal strains 

E°T/T° [ " + V)aoTo(1 %=(l+v)(l_2v)LVe%+(1-2v)e,i-(1 . '~-)aq] 
(23) 

Using equation (23) with the thermodynamic 
relationships given in the Appendix, we obtain the 
following results for the internal energy and entropy 
changes in a rubber-like material, which we now define as 
a linear thermoelastic solid with temperature dependent 
properties 

( =EoTo o .. 
Oeij]T 1 - 2 v  o (24) 

~%]T=\---~--],,, = T -~ T(1-2v)  6q 

(25) 

Upon substitution into the respective total differentials, 
using the previously derived temperature dependence, 
integrating gives for the internal energy and entropy 
change of rubber 

E°T°% e + C , ( r -  To) (26) 
U - Uo = 1 - 2v 

S-So=-~½0. ,~O E°T°%e]+C, In T 
1 - 2 v  J Too (27) 

At constant volume, and temperature T= To it is seen that 
U - Uo = 0 and S -  So = - 1/To(l/2 0.0%)" For comparison 
with experiment, the uniaxial form of equations (26) and 
(27) are, at constant pressure and temperature T= To, 

U -  Uo = Eo Toaoel (28) 

Q= To(S-So)=Eo~oTog1-1Eos12 (29) 

and 

W = A - A o =  ( U -  Uo)- To(S-So)=½Eoea z (30) 

The heat, work and internal energy for rubber at small 
strains predicted by equations (28)-(30) are shown 
schematically in Figure 3. The form of these functions has 
been confirmed several times for natural rubber using 
deformation calorimetry x°-~2. In particular the heat 
goes through an inversion at ex = 2% To, while the internal 
energy is found to be a linear function of strain at constant 
temperature and pressure, this being a result of the linear 
relationship between strain and dilatation at small 
strains. 

Volume and shape contributions to the internal energy 
and entropy changes in rubber during deformation can be 
separated by considering the principal stress difference, 
o11 - -  0"22, which removes the volume dependent terms for 
a uniaxial experiment as is normally done in rubber 
elasticity formulations. In this way the uniaxial stress 
becomes, from equation (23) 

Eo T/ To 
l + v  

But since e22 = (e - el 1)/2, 

0. = 3GoT/To(el i - e/3) 

= 3GoT/Toe'lx 

(31) 

(32) 

Energy 

W 

4 e 

Figure 3 Heat, work and internal energy change versus strain for a 
linear rubbery solid 

and the stress-temperature coefficient is 

(O_ff_~)3Go, a (33) 

Introducing the notation used in the literature of rubber 
thermodynamics, the internal energy change with strain 
at constant temperature and volume should be 

Fe =(~O-sU-U ~ = T[0. - (&r ~ l = 0  (34) 
\&11]~ L T \OT /,;,J 

The energetic component of the stress arising solely from 
shape or length changes at small strain and constant 
pressure in a ratio with the stress (a = f )  is therefore 

_- 1 / 0 ± h  _-0 
f - 0 . \ O e l i / z v  0.\05'11)r 

in agreement with the definition of an ideal rubber 
exhibiting no volume changes during deformation. 

COMPARISON WITH EXPERIMENT 

Experiments by Gee, Stern and Treloar 13 show 
reasonable agreement between measured dilatation and 
that calculated from equation (26) using internal energy 
changes obtained from stress-temperature data of natural 
rubber at constant pressure. Gee 14 obtained equation 
(26) in differential form, (~U/Oe)r, by assuming the 
relationship between internal energy and volume for a 
material under hydrostatic pressure to hold when the 
volume change is due to a tensile stress. Thermostatic 
measurements on natural rubber in shear by Meyer and 

• van der Wyk 15 at small strains showed no thermoelastic 
inversion and a negligible energetic component to the 
stress, since shear strain involves no volume changes. 

For direct comparison with equation (28), we cite the 
uniaxial stress-temperature data at constant (atmos- 
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Table 1 @U/d~~)~,,p values 

x 10M4 Pa 

Measured Calculated Measured Calculated 

1.0049 4.23 4.34 13.23 13.56 
1.0095 4.28 _ 7.13 7.23 
1.0117 4.30 _ 5.66 5.71 
1.0162 4.34 _ 4.06 4.06 
1.0206 4.31 _ 3.15 3.17 
1.0255 4.32 _ 2.62 2.63 
1.0302 4.39 _ 2.25 2.23 
1.0401 4.39 _ 1.74 1.72 
1.0497 4.46 _ 1.42 1.39 

cx> =4.34f0.07 

pheric) pressure for natural rubber at infinitesimal strains 
obtained by Shen and Blatzg. These authors report 
u,,=2.2 x 10e4/K at To=303 K, and we calculate 
E, = 0.651 MPa from the data at strains up to 0.03. The 
change in internal energy with tensile strain at constant 
pressure should then be 

au (4 aE 
=E,T,a,= (0.651 x lo6 Pa)(303 K)(2.2 x 10m4 K-‘) 

1 TJ’ 

=4.34 x 104 Pa 

In ihble I the values of (aLJ/&,), p evaluated at each 
strain for temperature T = TO are shown using equation 
(46) and the reported stress-temperature data. It is seen 
that at small strains, where the linear theory is expected to 
hold, reasonable agreement with the measured value is 

1 au 
achieved. The ratio - - 

( > (r asi T,,P 

calculated with the 

measured stress is also compared to values for this 
quantity obtained from the thermoelastic data. Again, 
good agreement is obtained at small strains where 
Ed =A1 - 1 and I, is the extension ratio. 

According to equation (22), the thermoelastic inversion 
should occur at .si =clOTO = 0.067. This compares 
favourably with the value of .sl = 0.070 obtained from the 
data of Shen and Blatz, considering the limitations of the 
small strain theory. 

The form of the thermal expansion coefficient leading 
to equation (23), i.e. a(T)=u,T,/T, suggests slight 
negative curvature in a plot of volume versus temperature, 
as predicted by Boggs. Moreover both the thermal 
expansion coefficient and the modulus are assumed to be 
temperature dependent material properties which are 
independent of deformation state. Experiments on 
natural rubber by Allen, 
cl, is independent of 
1, = 1.G2.2. 

Bianchi and Pricei6 confirm that 
uniaxial strain in the range 

CONCLUSIONS 

A linear thermoelastic constitutive equation for rubber at 
small strains is obtained by generalizing classical linear 
thermoelasticity to include a temperature dependent 
modulus and thermal expansion coefficient. From this 
constitutive equation it was shown that the internal 
energy change in rubbery solids is the result of dilatation 
while the distortional strain energy resides in the entropy 
change. This behaviour is in contrast to hard elastic solids 
but in complete agreement with statistical and molecular 

theories of rubber elasticity. Consequently, the 
temperature dependent modulus and thermal expansion 
coefficient of rubber reverses the role of internal energy 
and entropy contributions to deformation at small 
strains. 

Quoting from Gee’s 1946 paper on natural rubber, ‘We 
conclude therefore that for small extensions, the observed 
expansion is produced by the hydrostatic component of 
the tensile force. It consists of an increase in the average 
intermolecular spacing, and is accompanied by the 
equivalent increase in both internal energy and 
entropy.’ 

APPENDIX 

General thermodynamic relations for elastic solids 
The first law of thermodynamics which describes the 

complete energy balance for any closed deformation 
process, whether reversible or irreversible, has the well 
known form 

dU=dq+dw (36) 

where dU, dq and dw are the incremental changes in 
internal energy, heat and work per unit volume. 

The incremental work may be due to changes in any 
relevant extensiveintensive mechanical variable pair 
representing generalized forces and displacements. For 
homogeneous solid deformation, the work per unit 
volume is 

dw = aijd&ij (37) 

where Oij, Eij (i, j = 1, 2, 3) are components of compatible 
stress and strain tensors. With equation (37) the first law 
of thermodynamics for solid deformation becomes, 

dU=dq+oijd&ij (38) 

The second law of thermodynamics gives the entropy 
balance, S, at constant temperature, T, 

dS>% 
‘T 

where the inequality holds for spontaneous or irreversible 
processes and the equality for reversible processes. 

For a reversible deformation process, the combined 
first and second laws give 

dU= TdS + oijdEij (40) 

The Helmholtz free energy, A, is 

A=U-TS (41) 

which toegether with equation (40) yields 

dA=a,d&,-SdT (42) 

From equation (42) it follows that 

aA 0 a&, T’aij 

and 

aA (-1 al- Ey 

=-s 

from which 

(F$= -(gjT 

(43) 

(45) 
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From equations (40) and (45), 

( ~ ) r  = / & h j '  a i i -  T~-~- ) , ,~  (46) 

Writ ing the total differential for the internal energy in 
terms of  the strain and temperature,  

O U  ~U 
d U = ( O U ~  deq + ( - - ~  d T  (47) 

and rearranging equat ion (40) to read 

1 1 
dS = ~- d U  - ~- ~0deq (48) 

the incremental  ent ropy change with equat ion (47) in 
(48) is 

, dT] ' d S = T - L \  . . . ,  . . , ,  (49) 

from which it follows that  

Subscripts eq on all of  the above partial  differential 

equations imply that  all strains are held constant .  In  
equat ion (50), C~ is the heat capacity of  the solid at 
constant  strain. In the undeformed state, C, = Cv. 
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